Search results

Search for "low detection limit" in Full Text gives 16 result(s) in Beilstein Journal of Nanotechnology.

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • bacterial concentration. By utilizing paper-based analysis, we were able to achieve naked-eye detection without the need for instruments. Additionally, the peroxidase-like activity of the NPLs paper-based colorimetric sensor was suggested for the first time. With a low detection limit of 10 CFU·mL−1, this
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • transfer [46]. In order to measure the hormone 17β-estradiol in complex sample matrices (milk, urine, or environmental water), Zhang et al. [43] developed a practical FRET-based turn-on fluorescence aptasensor with high selectivity, a low detection limit of 0.35 nM, and an efficient recovery rate of 92.4
  • able to attain a very low detection limit of 0.11 μM and a Stern–Volmer quenching constant value of 1.2 × 104 M−1, which demonstrated the accuracy and precision of the MOF’s sensitivity towards the detection of antibiotics. They noticed that the MOF’s (fluorophore) excitation peaks are superimposed
PDF
Album
Review
Published 01 Jun 2023

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • = benzene-1,4-dicarboxylate), Cu(BPDC) (BPDC = biphenyl-4,4′-dicarboxylate), UiO-66, UiO-67, and UiO-68-NH2. The sensing system showed a very low detection limit of 1 ppm for each pure isomer and can discriminate between 16 different xylene mixtures with 96.5% accuracy at a concentration of 100 ppm
PDF
Album
Review
Published 27 Oct 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • performed to achieve excellent nanosensor performance, such as higher sensitivity, low detection limit (10.9 pM), linear response range (3 × 10−11–11 × 10−6 M), and fast response time. The proposed ERGO/GCE nanosensor exhibits excellent electrocatalytic activity, long-term storage stability, reproducibility
  • detection limit and long-term stability at room temperature. Graphene oxide (GO), consisting of a monolayer of sp2-hybridized carbon atom network, has already been used in electrocatalysis, nanoelectronics, bionanosensors, and sustainable energy storage systems due to its larger active surface area
  • samples. Thus, the primary goal of this report was to showcase the fabrication of a more effective, economical, electroactive surface in a simplified way to selectively detect PT residues in real samples. Thus, a robust sensing matrix can be used for designing a nonenzymatic POC device with a low
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • . Currently, the electrochemical method is most widely used due to its simplicity, selectivity, and low detection limit. Modified (with enzymes) and unmodified electrodes are used as working electrodes. In the case of modified electrodes, the surface is functionalized by redox-active enzymes (the most popular
PDF
Album
Full Research Paper
Published 03 May 2022

Use of data processing for rapid detection of the prostate-specific antigen biomarker using immunomagnetic sandwich-type sensors

  • Camila A. Proença,
  • Tayane A. Freitas,
  • Thaísa A. Baldo,
  • Elsa M. Materón,
  • Flávio M. Shimizu,
  • Gabriella R. Ferreira,
  • Frederico L. F. Soares,
  • Ronaldo C. Faria and
  • Osvaldo N. Oliveira Jr.

Beilstein J. Nanotechnol. 2019, 10, 2171–2181, doi:10.3762/bjnano.10.210

Graphical Abstract
  • immunosensor could operate within a wide range from 12.5 to 1111 fg·L−1, with a low detection limit of 0.062 fg·L−1. Multidimensional projections combined with feature selection allowed for the distinction of cell lysates with different levels of PSA, in agreement with results from the traditional enzyme
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • ultrahigh sensitivity and a fast response to NOx gas at room temperature in air, leading to a low detection limit even down to 10 ppb, probably due to the synergic effects of the unique electronic conduction of black phosphor and the heterostructure of the Co3O4 nanoparticles. The inclusion of other
PDF
Album
Review
Published 16 Oct 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • annealing and calcination [83]. A very low detection limit (9.7 ppb NOx) with an optimal response time (20 s) is achieved with nanocrystalline (5–10 nm) SnO2 NTs at room temperature [141]. Similar behaviour is exhibited by p-type NiO and CuO toward CO and NO2 [111][112]. The gas sensing behaviour also
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Gas sensing properties of MWCNT layers electrochemically decorated with Au and Pd nanoparticles

  • Elena Dilonardo,
  • Michele Penza,
  • Marco Alvisi,
  • Riccardo Rossi,
  • Gennaro Cassano,
  • Cinzia Di Franco,
  • Francesco Palmisano,
  • Luisa Torsi and
  • Nicola Cioffi

Beilstein J. Nanotechnol. 2017, 8, 592–603, doi:10.3762/bjnano.8.64

Graphical Abstract
  • repeatability, and a low detection limit, where all of these sensing properties were controlled by the type and loading of the deposited metal catalytic NPs. Specifically, in the NO2 gas sensing experiments, MWCNTs decorated with the lowest Au content revealed the highest sensitivity at 150 °C, while MWCNTs
PDF
Album
Full Research Paper
Published 10 Mar 2017

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • compared to its response to CO2, CH4, and C3H8, thus the sensor is considered to be selective for CO under these test conditions. Keywords: composite thin film sensor; dip coating; low detection limit; miniaturized alumina transducer; selective CO detection; sol–gel; Introduction For the past decade, the
PDF
Album
Full Research Paper
Published 22 Dec 2016

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • methodology and reached a low detection limit for miRNA [29], most of the label-free miRNA biosensors are developed using molecular probes such as methylene blue [30], Oracet blue [21], and ferrocene boronic acid [31]. In spite of the quicker and more accurate results offered by the label-free methods, it
  • agreement. It is worth noting that commonly used miRNA determination techniques such as northern blot and qRT-PCR provide a significantly low detection limit (aM-nM) and excellent selectivity [21]. However, their complex time-consuming procedure along with the need for amplification steps has made them
  • reproducibility, low detection limit, wide linear range, considerable selectivity, and especially no need for sample pretreatment, present this miRNA biosensing procedure as an ideal way to detect and evaluate miR-106a in biological samples for clinical application. It is believed that this miRNA-nanobiosensor
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • of 10−6 mol·L−1. Conclusion Owing to their unique electrochemical properties, layered composite PEDOT/PSS/EM and PEDOT/PSS/EM-Enz electrodes offer efficient electron transfer, low detection limit, high sensitivity and good reproducibility toward the oxidation of catechol and hydroquinone. Furthermore
PDF
Album
Full Research Paper
Published 08 Dec 2016

Hydrophilic silver nanoparticles with tunable optical properties: application for the detection of heavy metals in water

  • Paolo Prosposito,
  • Federico Mochi,
  • Erica Ciotta,
  • Mauro Casalboni,
  • Fabio De Matteis,
  • Iole Venditti,
  • Laura Fontana,
  • Giovanna Testa and
  • Ilaria Fratoddi

Beilstein J. Nanotechnol. 2016, 7, 1654–1661, doi:10.3762/bjnano.7.157

Graphical Abstract
  • by tyrosine and the heavy metal sensing performance was measured by observing the shift of SPR band. In this case the low detection limit for Cu(II) is attributed to the high quality of the AgNPs. From the perspective of optimizing the properties of metal nanoparticles, research groups have focused
PDF
Album
Full Research Paper
Published 09 Nov 2016

Highly NO2 sensitive caesium doped graphene oxide conductometric sensors

  • Carlo Piloto,
  • Marco Notarianni,
  • Mahnaz Shafiei,
  • Elena Taran,
  • Dilini Galpaya,
  • Cheng Yan and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2014, 5, 1073–1081, doi:10.3762/bjnano.5.120

Graphical Abstract
  • electrodes. They reported a very low detection limit (20 ppb), which is attributed to the high quality of their GO samples (large and highly oxidized flakes). Robinson et al. [46] demonstrated that by increasing the level of reduction it is possible to improve the response time and 1/f noise. It has also
  • the GO resulting in the reduction of oxygen groups. The developed GO-Cs based conductometric sensor exhibits a very low detection limit for NO2 (down to ≈90 ppb) at room temperature. This can be attributed to the p-character of the GO film, due to the intercalation of Cs atoms leading to the reduction
PDF
Album
Full Research Paper
Published 17 Jul 2014

Pyrite nanoparticles as a Fenton-like reagent for in situ remediation of organic pollutants

  • Carolina Gil-Lozano,
  • Elisabeth Losa-Adams,
  • Alfonso F.-Dávila and
  • Luis Gago-Duport

Beilstein J. Nanotechnol. 2014, 5, 855–864, doi:10.3762/bjnano.5.97

Graphical Abstract
  • amperometric microsensor (ISO-HPO-100, World Precision Instruments, Inc.). These sensors contain a flexible, activated carbon-fiber sensing electrode coated with a proprietary membrane that enhances the low detection limit (LDL) of H2O2 to a value of 10 nM (ten times lower than in the bare Pt electrode; LDL
PDF
Album
Full Research Paper
Published 16 Jun 2014

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • carbonization techniques. And the ECNFs were employed to design a novel laccase-based biosensor, which displayed outstanding sensitivity to catechol with a wide linear range, a low detection limit and a fast response. Furthermore, the biosensor also displayed good repeatability, reproducibility and stability
PDF
Album
Full Research Paper
Published 24 Mar 2014
Other Beilstein-Institut Open Science Activities